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ABSTRACT

We establish the continuity of weak solutions to singular equations of

the type

g% B(u) - div ;(x,t,u,vxu) + b(x,t,u,qu) =0 ,

where B(°+) is a graph satisfying assumptions appropriate for the equation of

porous media, in particular for the filtration of gases.

AMS (MOS) Subject Classifications: 35K10, 35K15, 35K20, 35K65.

Key Words: singular or degenérate evolution equation, free boundary, porous

media
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TPthe singular parabolic equations treated}ﬁexdjgérve as a model for filtra-

tion of fluids in porous media\)\ The function Q‘q(xrﬂ-' isf;siqw“é',’“ﬁ ”ﬁ serves
as the model situation for such problems and makes the equation singular.

Usually solutions of boundary value problems associated with such equations
are found in a global sense, i.e. they are characterized as equivalence classes
in certain Sobolev spaces. It is of interest to decide whether they may be
defined pointwise and whether they possess some local regularity such as
continuity.

In this paper we prove that global (weak) solutions are in fact continuous.
Moreover, we study under what circumstances their continuity can be extended up
to the boundary of the domain where the process takes place.
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The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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CONTINUITY OF WEAK SOLUTIONS TO A GENERAL
POROUS MEDIA EQUATION

Emmanuele DiBenedettof

1. Introduction

The aim of this paper is to extend the results I obtained in a previous work [10]
about the continuity of weak solutions of singular parabolic equations in divergence

form of the type

1.1) %‘5(.“) - div ;(x,t,u,vxu) + b(x,t,u,qu) 30

in the sense of distributions over a domain Q in ]Rm':l , N21 . 1In [10] I consid-

ered the case of B8 being a coercive, maximal monotone greph in RxR with a jump at

the origin, namely

81(5) , 8>0
(1.2) g(s) = ¢ [-v,0] . s=20
82(5) -v , 8<0 ,

where Ei , 1 =1,2 are increasing coercive Lipschitzian functions in R, and v
is a given positive constant. The situation was typical of diffusion processes with
a change of phase. Here we consider the case of B8 continuous, coercive, monotone
in R, such that B8'(s) '"blows-up" at s = 0 . The model example of B I have

in mind is

*Mthmtica Department of Indiana University, Bloomington, Indiana 47405.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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3 : (1.3) i(s) = |s|™ stgn s , m>1 ,

which occurs in filtration of gases im pcrous media when the flow obeys a polytropic ¢ f
law.

Our goal is to prove that weak solutions (in a sense to be made precise) of (1.1), for ¢ 4
8 such as (1.3) are continuous,

To our knowledge available, related regularity results essentially deal with non-

negative weak solutions of

YA o e earer

(1.4) B(u)t -Au=0 in D'(QT) ,

vhere n_ 1s a cylindrical domain in UM

SO —

For N=1, n,r E RxR+ , the sharpest results are due to D. Aronson [1,2 3] .

é When g(-) 4is as in (1.3) he proves that weak solutions of (1.4) are locally Holder con-

: tinuous with respect to the space variable, with optimal exponent m/m-1 . The time-

regularity is invesgigated in [23, 11, 9]. *
For N> 1 and R(+) as in (1.3), continuity and Holder continuity are due to

Caffarelli and Friedman [5, 6]. Their proof employs an interesting fegularizing effect of 1

operators like in (1.4), on non-negative solutions, discovered by Aronson and Benilan [4].

For equations bearing lower order terms we mention an unpublished result of A.

Friedman, reported by L.A. Peletier in [15): Non-negative weak-solutions of

(1.5) 2y - 4l

m-1
at u

|l'l-1

--lu u'm>1,n>0

are continuous in their domain of definition, provided that n2m .,
When the signum restriction on the solution is relaxed then the continuity of weak

solutions of
f B(u), - Bu = £(x,8) in D'(2p)

has been proved by Caffarelli and Evans (7] in the case f(x,t) = 0 , and P. Sacks [16],

if £ £ 0, wunder suitable assumptions on f .
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In the present paper no assumptions have been made concerning the signum of the solu-
tion, or the linearity of the operator involving s)ace-derivative. Also no relationship
has been imposed between the (possibly non-linear) :(x,t.u,vxu) R b(x,t,u.qu) and the
graph B8 .

The method of proof closely reflects the one presented in [10). One feature that
made possible the results of [10] was the observation that graphs B such as (1.2) are,
roughly speaking the sum of the identity graph and the maximal monotone extension of the
Heaviside function. This is not the case in the present situation, so that even remaining
in the same framework, a different analysis has to be produced to take in account the nature
of the singulazity of B . This will result in a modulus of continuity for u which is
"worse" than the one derived in [10].

Our work is organized as follows. Section 2 collects assumptions and statement of
results. Some preliminary material form section 3 whereas the proof of theorem 1 is the
object of sections 4, 5. Finally in section 6 we make some remarks about continuity of

the solution up to the boundary.

2. _Assumptions and statement of results:

We start by introducing some notation and making precise the meaning of solution of

(1.1).
Let 2 be a bounded domain in RN of boundary 32 and for 0 < T < » 1let n.r H
2x(0,T) , 2(t) = 9x{t} , ST = v Mmx{t} , T = ST v Q(0) .
O<tsT
For q , T 21, we denote by Lq r(QT) the Banach space of those meagurable func-
’

tions mapping 0T~>l , with norm defined by
T
el 0 - [0 llully g (0 ae

where [lul|? _ <) = lu(x,t)]% dx . When q =r =2, L _(2) coincides with the
q,0 Q 2,27°T

Hilbert space L2(9T) whose inner product (-.-)Z'QT generates the norm "."2'91 £
”.llz 9.q - Let u;'o (QT) denote the Hilbert space with inner product
'DT
(u, v) = (u,v) + (
(() 2.0, 2 ’ 271




while W;'l (QT) denotes the Hilhert space with inner product

du v
(ulv) 1,1 = (u,v) 1.0 + 3t °* )
s ’ at/2,0

w2 (QT) wz (QT) ¥

[4]
Here gEL R %% denote generalized derivatives. With wi'l(nr) we denote the space of
1

»1

those elements in W (QT) whose trace on 98x (0,T] is zero.

1
2
1,0
2

Let vz(nT) cW,.? (QT) denote the Banach space with norm

- » 2 z
Ioly, oy = a0 oo lac o0l g + ool o

where

I Ty

N
9 2 du Ju
3 "vxu “ z'nr 121 (axi 1 axi) z’ﬂr

Finally we let V;’o (QT) < V2 (QT) denote the Banach space of functions such that the map

is that of

t+u(+,t) is continuous with respect to ||-"2 g » @and the norm |-| 1.0
’ vz ’ (QT) ,

V2 (nr) with the ess deleted.
Definition: By a weak solution of (1.1) we mean a function wuc¢ vz(nT) such that
t t -
(2.1) I B(u) ¢(x,7) dx |t + J j {-8(u) ¢, + a(x,1,u,9.0) -7 ¢
Q 0 t Q X X
0
+ b(x.T.u,qu)¢}dxd1 =0,

°
for all ¢ ¢H;’1(QT) and almost all to st such that 0 <t <t <T,.

0
The integrals in (2.1) are well defined modulo basic assumptions listed below. If

u € V2 (QT) is solution of a boundary value problem associated with (1.1), then it sat-

isfies (2.1), the boundary conditions being specified separately. By the local nature of

our arguments, we need not associate (1.1) with a particular boundary value problem.

Throughout the paper we will make the following assumptions, on 8 , a: (nl .az,....aN)

and b .

[A.] Let B(<) be continuous, monotone increasing in R such that e(0) = 0 . With

1
8'(s) we denote the Dini numbers (whenaver they exist),
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B(8)-=B(s=h) | 4

lim sup h
h\v0
B'(s) =
1im sup - B(s) _hs sth) , 8<0
h\O

and on s~+B'(s) assume the following

(1) 0 < a, s B8'(s) , Vse R\{0} , where a is a given constant.
(11) 1lim inf B'(s) = + =
[s[+0
(ii1) There exist_s an interval [—60 R 60] around the origin such that B8'(s) < 8'(r)
for se R\[-Go . 60] and re [-60 s 50]\{0} and B’'(:) 1is decreasing over

0, 6‘0] and increasing over [-60 ,0) .

Remarks: (1) We will use without mention the following consequence of assumption (All:

sup B'(s) < ay max{B'(Go) ; a'(-ao)} .

ls1>5,
(11) Without loss of generality we might assume that
B'(s) >1 , Vse [-60, 60]\{0} .

(i11) Notice that there is no symmetry requirement on g(+) around the origin.

(nz] a, , b are measurable on QT x IRN+1 i=1, 2,...,N .
1A,) 3(x,t,u,p) e P 2 Co(lul) H;]z - 9p(x,0) , ¥ Per®
fa, e, | 5 upul) 1B + 6,000
Ibex,t,u,p5] < uy (ub) 1312 + 4, (%,
where Co(-) : R+-’R+ is continuous and decreasing,

ui(-) :R++R+ are continuous and increasing, 1 =0,1

and the ¢1 +1%0,1,2 are non-negative and satisfy




2
¢0p°1102£1.a

(«,.)

ST
where the numbers q , * 2 1 are linked by the relations

1iMagoy , 0ce <1
r

2q 1

- N - 1
qe[m,ﬂ , re[l_‘l,n] , for N 22

- - 1 2
Qe (1,#) , re(—‘—'l_,cl , 1_2,,1) » 0K <

N

for N=1.

With (sn} ve denote a sequence of C (R) functions such that Bn-rs uniformly on com-

pacts of R\{0}, and satisfying, Bn(O) = 0 and

(2’2) °<00$5;l (B)SB'(S) ,VBER\{O} ,n'1,2,...
Such a seguence can obviously be constructed.

[A,] Let u eVz (QT) te an essentially bounded weak solution of (1.1). We assume
that u can be constructed as the weak-Vz (QT) 1imit of a sequence {un} such

that
llu,,(l,.,.nT sM<® , n=1,2,3,..

1,0
2

of identity (2.1) with B(+) replaced by Bn(-)

for some constant M , and each u € v (ﬂT) 18 a weak-solution of (1.1), in the sense
. 1,0
Also since unevz (QT) » each u

will satisfy (2.1) for all intervals [to,t] < (0,T) .

Remark: Assumption [Aal is introduced to justify some of the calculations in what follows,

and is not restrictive in view of the available existence theory. (See references

in [10)).

Theorem 1: Let (All - (A3] hold. Then any essentially bounded weak solution of (1.1),

satisfying [Ab] , 1is continuous in

We can now state our main result.

T
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Remarks: (i) By the local nature of our arguments, in Theorem 1, the function u need
not be defined in a cylindrical domain, since we can always reduce to this
case by selecting in (2.1) test functions supported in cylindrical domains
contained in QT . Hence for the purpose of proving Theorem 1 we need only
to assume that u is locally esseptially bounded in Q that wuc¢ VZ,loc(Q) .

and satisfies [AQ] locally.

(11) Assumptions [A2] -[A3) are the same to those imposed in [14]) to study the

Holder continuity of weak solutions of (1.1) with £8(s) = s .

(i11) 1If in [A3] there exist o€ [ﬁgf' 2] such that

>, 2~0
Pl

[bex,e,u,p) | 5wy () | +0,0x,8) ,

then the uniform local essential boundedness of the approximations u

follows from the results of [14].

(iv) In [A3] for the space dimension N = 1 , one could also allow a =1 and

q ==, modulo some modifications in the proof of theorem 1. We omit the

lenghty modifications needed, since for N = 1 more precise regularity
results are available (even though for particnlar cases of (1.1)) (1,2,

11, 13].

If (1.1) is associated with an initial boundary value problem of Dirichlet or Neumann
type, then under suitable assumptions on the boundary conditions and on the smoothness of
a1 , the continuity of u can be extended to the closure of QT . We refer to section
6 for the precise statement of these results,

We will prove the theorem in terms of the sequence {un} introduced in [Aa]. Namely

we will prove the following proposition,

Proposition 1: The sequence (un) in [Aa] is equicontinuous in QT .

1200




Also the proof of continuity of u in 5& will be carried in terms of equicontinuity of

the sequence (un) in ©

T

We remark that by virtue of the smoothness of Bn(-) , in view of the results of [14]

each un(x,t) is Holder continuous in §, with Holder constant and exponent Jependent

T

on n .

Cover AT SR A, Ly e

As 1in [10] the method of proof consists in modifying suitably the parabolic version of

.

DeGiorgi's estimates [8), as appearing in [14]. Roughly speaking we will construct for

every point (x0 ,to)e QT a family of nested shrinking cylindersiwhere the oscillation of

(x,t)-»un(x,t) decreases according to the rules imposed by the operator in (1.1), but in

a way which 1s independent of ne N .

The statement that a certain quantity or function depends upon the data, will mean that it

can be determined in terms of N ,Co(-) ,uo(-) ,ul(-) '¢i i=0,1,2, a ,E 1Ky 5 @ ,60

and the essential bound of |u| over Qp -

3. Preliminary material: . ,

This section is devoted to the derivation of a system of integral inequalities which

will be the main tool in the proof of Theorem 1.

Let wue Lq r(QT) and keR. Set (u--k)+ = max{ (u-k) ; 0} ; (u-k) = max{-(u-k) ; 0} .

It is obvious that (u—k)t eI..q t(QT) and it is known that if ue Vé’o(QT) ,» then also
»

(u-k)* belong to V;'O(QT), ([140.

vith B(R) we denote a ball of radius R in ‘RN . and if x->u(x) is defined in

B(R) we set

A g T REB®um > k) A g = lxeBR[uG < K}

Also let ‘N denote the measure of the surface of the unit ball in RN , so that

meas B(R) = N RN . The Steklov averagings uh of ue Lq r(QT) are deflined as
»

t+h
uh(:c.t)-%Jt u(x,1)dt, 0stsT~h , h>0.
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10 o i m ' ; 11'0 ~ ’ 0 .
1 u},\z’ (.I) , then u vy da the topology of \2 ("'T—c) , Ve >
. . 1,0 .
An integration by rarts shouss (sce [14) for details) that if une\/z' (&T) satis-

fies identity (2.1) with B8 replaced by Bn , then

t ) -
(3.1) J J a—at- Bn(un) ¢+ a(x,?,un,qun . \7x ¢ + b(:t(,‘t,un.Vxl.\n ¢ dxdr = 0
tO Q h h h
0

for all ¢e’w;’1(QT) and all intervals [to,t] < (0, T-h]
From now on {(x,t) ->un(x,t)} will denote a sequence satisfying (3.1) and M 1is

a positive number such that
logllag s m=1.2.5,0.

A system of integral inequalities wili be derived for (x,t) —»un(x,t) by making particular
selections of the test functions ¢ 1in (3.1) and letting h+»0 . Next we construct test
functions in (3.1).

Let 01 y 025 (0,1) and consider the concentric balls B(R) and B(R—al R) , and

the cylinders Q(R,A) = B(R) x [to,to+)\] , and Q(R—clR, J\-oz ) = B(R-cln) x

[t0+02A,to+A] , 2 0.

Define cutoff functions in Q(R,*) as follows:

(a) TeC, [QR,2)] , such that C(x,t)laB(R) =0,Vte [ty £+, tx,t) =0,
vxeB(R) and I(x,t) =1 (x,t)eQ(R—clR,)‘—oz)\) s 3%- z 20, )vx t] < (clR)‘l ;
3 -1
b3g ¢l € (o7 .
(b) LeCy(B(R)) such that &(x) =1, xeB(R-0R) , [V ] < (ola)'l )

For any cylinder O(R,)A) c QT-h we make the following selection of test function in

(3.1),
6 = 8718 (u)1) - ) ¢?
n n n’ h ’

where ke¢ R satisfies

(3.2) ess sup (u - k)i <8 ,
Q(R,2)
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for some & > 0 to be selected, aund (x,t) »z(x,t) 1is chosen as in (a).

We treat the term involving g%[sn(un)]h in (3.1) as follows. (V- drop the subscript

n for simplicity of notation)

t
- j [ * g% (B(w], [8‘1([8(u)]h) - k]: cz(x,r)dxd1 -
‘o

t 2 ?
'J J g (x,7) 37 A (x,1) dxdt ,
t h
ty 'R

[8(w)] _
-tjo hog by -t ae .

t )
I A1) 37 8 (x,1) dx dt ,
Q

t

= J Ah(x,t) cz(x,t) dx - I
Q
0

so that letting h-+0 we obtain

a t

2
L +12 7°I w-10F 2(x,t) dx - I I A(x,T) ai 22 (x,1) dx dt .
Q Q t

h
%o
In estimating the remaining terms in (3.1) we use assumptions [Al] -[A3], (3.2) and routine

calculations to obtain (see [10] for details)

t
(3.3 I J {3(x,1,u,7_u) « V_¢ + b(x,7,u,7 u)p}dxdr 2
R x x x

o
2

t
2 (CoM) - € - 6 u (M) It |Vx(U°k)tl cz(X.t) dxdr -
0

t 2
- lon + 1) J: JQ (u-i)®) |7, ¢ axar -

t 2, .2 t
- [¢0 + 89, + @11 £ (x,1) x{(u-k)" > 0] dxdrt .
to 1] R

x(L) denotes the characteristic function of the set I . By Holder's inequality

Here

t 2, 2 $

J= J J [00 + 502 + 01] 7 (x,1) x[(u-k)~ > 0] dxdr <
t Q

0

et e e An A = ent W oS A



(t
max{1.5} “¢0 + °2 + ¢§Hﬁ.i‘,9-r Jt
0

+ l% =1 -«x, , the numbers

Since
2q 1

RN

q = 240+
) q-1

satisfy the relationship

(3.4)

and their admissible range is

qs(2,§2-_N—2 , rel2,) for N2 3

qe (2,%) » Tre(2,°) for N=2

qe (2,%) , ref4,)

With this notation we have

J < max{1,8} |[¢.° + ¢2 + Oi“a,;’nl‘ L Eﬂeas Ai'k(rﬂq dt .
0

S, (M)
On the right-hai.! side of (3.3) we select ¢ = 7 and

Co™)

(3.6) 6§ = min§l .60 N Z;I?ij

where &

0 is the number in [AI] « Therefore collecting all the previous estimates we

obtain the inequalities

+ t . 2
3 ) 3.0 GOH(u—k)' ‘”;,n (r) + CO(M) J IQ lvx (“'k)-l (2 dxdt <
t
] 0
] t + , 2
Y J 0 I {(u-k)"] (IVx c|2 + c|ctl) dx dt
to f
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t0+X -
+ v J [meas Ak R(T)]q dr

o

t .
+y A(x.t)icz (x,T)dxdr , Vte[t,,t . +1],
ot 0*"0
t, ‘R
0
where y 18 a constant depending only upon the data. We stress the fact that the choice
of ¢ , 6 and y 1is independent of n .
The inequalities above are valid for every cylinder Q(R,A) < n,r and every ke R
satisfying (3.2) with the choice (3.6) of the parameter § .
A change of variable in the integral defining A (x,t) gives

z(un-k)*

(3.8) A (x,t) = I n Bl"(k+n) dn

0

Therefore
A (x,8) < B 00 (-0 < max(BCH) , B(M)}(u -1)*

As a consequence, recalling the construction of (x,t)+r(x,t) , and suitably rede-

fining the constant y , we have the inequalities

2
- 4
s v i+ @71 gl q@

+
3.9 |(u k7|
n v;’O(B(R-olk)x(t0+ozk.t0+x)] ]
r 2 " §
t 42 L J2aw) _
+ v I 0 Enea- A:*R (Taq d}r + v(czk) 1 ” (u“-k)i dx dt
‘o Q(E, )

where A:tk () = {xeB(R)‘(un—k)t(x,t) > 0}

1 Inequalities (3.9) are valid for every ke R , satisfying (3.2), every cylinder
ﬁ Q(R,A) ¢ n'r and every 01 . aze (0,1) . The constant Yy does not depend upon n . ﬂ

3
! Suppose now that (3.7) are written for the functions (un-k)* for k > 0, then

A(x,t) 1in (3.8) can be estimated as follows.

- 1 2.1 +2
1 A (x,t) € = sup B'(8)(u -k) S T sup B'(s)(u -k) i
; 2 2k " n 2 szk n

Therefore by redefining the constant vy , (3.7) imply
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| +2
(3.10) ! (u k) ,VI.O

p [P.(R-cl R) x “o’":x »to+A)]

0

sy sup 6" () 10,024 (0,0 M0 IS oriny
sk

t +A r %(1*«)
+y j

n+
. [meas AIT:,R (119 ar s VneN .

0

Inequalities (3.10) are valid for all k > 0 satisfying (3.2), all cylinder

Q(R,A) € Q_ and all Oy s Oy (0,1) . The constant Yy does not depend upon n .

T
An analogous argument can be produced for the functions (un-k)- » k<0 . It ylelds

inequalities like (3.10), to which we will refer to as (3.10) . All the subsequent argu-

ments will be carried over cylinders of the form Q(R, BRZ) Z B(R) x [t +932] ,82>0

o°’%

Lemma 3.1: Let x-+r(x) be a cutoff function chosen as in (b). Then there exists a con-

stant é(e) depending upon the data, but not upon n , such that

9. u lz t?(x) axdr s SO gV
2, *°n g 2 N
Q(R,6R7) 1
-1
AB T (18 _(u))l)
Proof: In (3.1) select the test function d(x,t) = e n na’"h cz(x) s, A>0 to

be chosen.
Routine calculations and limiting processes as h -0 yield the result. Similar esti-
mates in an analogous situation have been carried oa in [10] to which we refer for details.

+
Lemma 3.2: let keR , y 2 sup2 (Sn(un)-k)+ and 0 <n <y, Set
Q(R,9R%)

Wn(x.t) -t d T = max{in ¥ ry 7 O
u= (8 (u) -k) +n b= (8 (u)-k) +n

Then there exists a constant C(8) independent of n , such that for all

tc' [to.to+eR2]

w: (x,t) dx < J w: (x‘to) dx +
B(R)

B (R-alR)
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u ‘Nx N
* C(G“‘)~ u; F'(s) (1+2¢n n-)(l ,,_..2_ “ L
37 e 7han n

Remark: For simplicity of notation we will employ the same symbol .n for *u(x.t) and
- 2
N - .
on(ﬂn(un)) . In vhat follows v will mean 3y tn(v)
Proof: In (2.1) we select ¢ = (‘i h)' cz(x) where ¢((x) 1is as in (b) and
1]

M
Y
u- (an(un)lh-k) +n

*n.h

91,1 h
It is apparent that ¢V, (n.r) and that

2., W2
(W)" = 201 +9)(¥))

The first term gives

t

r I 218 ()l ) A dxar =] o2 . 1) c2ix) @
tnat“"h“'h n.hx.cxx

0 Q

%o

and letting h-+0 , for all :e[to,t +u2) , we have

0

t
8 2 ., .2 t
I In it an(un))h (wn'h) £ (x) dxdv » I

0: (x,1) (z(x) dx |
t Q t

0 0
In order to treat the other terms we first let h+0 and estimate the integral so obtained
in the following manner, (we drop the subscript n for simplicity).

t 2
J J (:("Tputv “) 2(1+¥)(°') B'(u) Yu Czh‘)
a x x

i)
+ 2 :(x.t.u.vlu)(vz)' g(x) 9 ¢(x)} dxdrt

¢ 2 2 2
:I I 26,0 4w (8% 8 () |9, 6" ¢F(0) dxdr
a

t
"2 L Is (G A )2 81wy c2(x)) ax a
0

t
4
- J J ug (M) |Vx“| ' VBT (W)L (x) |7¢] dx dt
Q
0

ORE
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( :
-o ] vt sy 19 cldwdr
Tty cu

t
t (2eg) -¢] [ J ) 0% £ ) |7 ul? e2x) axar
ty °0
¢ "2 o, 2

2 (OO(X.T)(IW)(* )T 8'(w) T (x)) dx dt

ty '8

2
o u, ()" (e
—2 [ I v v Clzdldt

(Io

t t
2 J I 0: (#')2 Cz(x) ¥ dxdr - 2 I
to ] t

For the lover order terms we have

{ v 19 c|¥dxdr .
0 '8

¢ 2 2
I I blx,t,u,V w)(¥ ) ¢ (x) dx dr
ty ‘0 x
t
) [ J 19 o2 wh dx anar
1 x
t 1]
0
¢ 2., .2
*[ J 02(!.1)(* )' g (xn) dx dr
to f
t 2 2 2
e J I e uf? asrn? 81w S dxar

t Q
2 n
4 Ll(") t 2 2
* Ta J I ¥ 17 u]® ¢ (x) dx dt
x
(] t Q

t
+2 l I Oz(x.Y) v cz(x) dx dt .
to 2

Collecting the estimates above gives
2 2 ¢
(3.11) ¥ o(x,8)07(x) dx + 2{C (M) -¢]

I A+ )28 19,01 7% () dxar s
(R a

‘o
t
s I w’(x.conz(u)au2mu:u;1)[ ] )28 oy + 63 + 0,067 (x) dx dv
B(R) o f

1 ax: 2 2t 2.2
+ (oge) maxildug(0)" 4 2, 4y (7} Ic ln ﬂlvxul T (x) + ]vclz)a, ar
0
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-1
Now we ohserve that og(x.t) vunishes on the set [(x,t) ¢ Q(R,9 Rz)l un(x,t) < Bn 1} .

Moreover ' s and ¥ < in , 8o that

3 [
3l

a+nen?ew s S armd awp 8
n s>8;1(k)

Using the definition of {(x) and lemma 3.1 we have
t —
] I w9 ul? ) + |9 ¢)raxar < E—‘%(En %)x“ .
gl o)

. .
By assumptions (ASI and Holder's inequality

t 2 2
{00+01+’2) g (x) dxdt <
ty '8 , ,
2 ;(1+r) ;(1+<)-1
< 'l’0+‘1+‘2ll§.i.ﬂ.r 0 kg cy KR o

Finally choosing ¢ = CO(H) in (3.11) we obtain

w:(x,t) dx < I w:(x.to) dx +
B(R"0,R) B(R)

Nk
+ 9—‘%’- sup  B'(s) (1+'-n %)(“'Bz' )“u N,
1 s27tao) n

=

where C(6) depends only upon the data but not upon n

Remarks: (1) If k <O and U 2 ess sup (Bn(un) ~k)~ , then an analogous lemaa holds for
%

;(x.t)'ln+_ 2 — ; 0 <n <
. b-(8,(u) -k +n

(11) The proof shows that C(6) (fincreases with 6 . In what follows we will use Lemma

=i

3.2with 0 <9 s 1 and C(8) replaced by C(1) .

i We conclude this section by steting a lemma which we will use as we proceed, and

whose proof can be found in (8, 14].
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lemma 3.3 (De Giorpi): Let uewi(B(R)) and let k, 2 be real numbers such that % > k .

Then
R:\‘+1
(3.12) (& -k)meas Al,R <D Eas—(m IA A ‘Vul dx ,
’ ks,R"£,R

where D is a constant depending only upon the dimension N ,

4., The main Proposition:

All the arguments in this section will be carried for n arbitrary but fixed. Let

(xo N to) eﬂT . to >0 and for R> 0, QR will denote the cylinder

QR = {lx-xol < R} x [to-Rz,tO] .

[

Let R < be so small that QZR c n.r , set
0

+ -
¥ = 8up u s u = dinf u , n fixed ,
Qg Qg "
2R0 ZRO
and denote with w any positive number such that
+ -
2M2w203cun'u ~-¥ .
Q
2R,

For ke R and 0<R52R° we set

—
x
A d

"w

{(x,t) € Qp fu, (x,e) > k}

g=)
-~
-~
-
~
0

z {(x,t) eQR ! un(x.t) < k)

In order to simplify the symbolism, since ne¢ N 18 fixed we will write Ai R (t) instead
1]

of A:*R (v)

Finally we let s denote the smallest positive integer such that
(4.1) ——-<6s60.szz,
where & , is the number introduced in (3.6) and 60 is the number in assumption lAll'

Proposition 4.1: let w be any positive number such that
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IMzuZoscun.

0
ZRO

There exist nurbers C*' <1 ,h>1 and a function n: R++ R+ such that

)y

osc u Suw (l-2

Qn

provided that
Nk
w2 @ (230)2 R

where R, = (ZIRO)h , and 7w 1is given by

[v(.L +5._.LB_ Bl.y_)-'.gv(-l.-)
¥W(y) =s+S5+A= 2

%

Here A,a,c §, ,h are positive constants which depend uniquely upon the data and do not

depend upon n ,w nor Ro .

Without loss of generality we may assume that
- +
(4.2) lw’l s .

1f the reverse inequality holds the arguments are similar. Also we will assume that

(4.3) o8C u = u+ -y o
0 n 20-1
2R
0
and treat later the case ' -y~ s —;“'_—1- .
2

Notice that (4.2) - (4.3) imply that

+ W w - + 7] w
(4.4) o> |=+ujz0o , yw -S>
2* 2 2* 2®
Observe moreover that we may assume
- W - w
(4.5) H ;up (v, - 4-2.)) > Ko
R

Indeed if (4.5) is violated
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- [ W
~fnfu -4 -—+—=
+
QR n 28 251
0
and adding sup u on the left-hand side and u+ on the right-hand side we obtain
Q
Ro
1
(ozsc u < w(l zs+1)
R
0

and Proposition 4.1 becomes trivial.
Proposition 4.1 will be a consequence of a series of lemmas which we state and prove

independently.

lemma 4.1: There exists a number o depending only upon the data and independent of

n,® and R . , such that if

0
2&1
N+2x
- -, 1 N+2
meas QRQ (u +28) Scyuw N Ro ,

then either

Ne
2

(1) H = ess sup (un- (u-+%))- s Ry
2

or

0 2®

2
The proof of this lemma is based on inequalities (3.9) and is almost identical to the proof

(11) meas Q; (u-+—u- ~ %’ H) =0 .

of lemma 3.1 of [10].

Here we only remark that without loss of generality we might assume

N mb < %
where
2k
b= N+2i
1

Suppose now that the assumprions of lemma 4.1 fail. Then since




. -
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we have that

+ b N+2
neas Q; -2 s (L-cpw) kg Ry
0 2

W

To shorten the notation we set

eo'cou .

Lemma 4.2: For every ac (0,00) there exists ¢ [to-R(z) yty - a Rgl , such that

1-8
+ 0 N
meas A () s34 R
v Ro
2
2 2
Proof: If not, for all 7Te¢ [to-Ro , to-a RO]
1-6
+ N
measA+u (1:)>1au<NRo
w-—sko
2
and
2
meas Q¢ (¥ - 0o % N N+2
p o) 2 x_ R - + .
Ro 25 . -Rz 1-a N o de > (1 90) KN Ro
00
We will choose
%

a = —
and observe that the previous lemma holds if "+°-93_ is replaced by u+-lp s, Vp2s.
Lerma 4.3: Consider the cylinder

a _ _ _ R
QRo = {]x xol < Ry} x (¢, aRy.tyl.

There exists Pg € N dependent upon a (and hence w) such that if

then




8 \2 :
meas{x ¢ B(R) Bn(un(x,t)) > Bn(u+) -9, ~~(§a < ( - (TO)] N R:(;
: 2

- . RZ
for all t« [to-ct ”'tO] .

Proof of Lemma 4.3: By monotonicity and coercivity of Bn(-)

o, > u" - o B " - ol

+_w. +_ o
Bn(u - s) < Bn(u ) 3, 2 , therefore

(8 (u) > B () - ag 2%1 < lu >t - ;w;]

so that by lema 4.2, there exists 1€ [to-Rg . to—aRg] ,» such that

+ w -6
meas{[xe B(R) :Bn(un) > Bn(u ) ~ @, ;—s—] x (19 S T= “n RO .

. + +
We use lemma 3.2 applied to the function (x,t) ->[Bn(un) - (Bn(u )y - LN _u_:s_)] (x,t) ,
2

in the cylinder
Q;o H {lx-xol < Ro) x [T'tol >

—“—’—,p>s+2.
2P

0. s

+ wat -
for u = a, %z sup (8 (u) - B, () -9 ;;)] , and n = a4
2 -

Ql
Ro
2 2
Here to - Ro S Tg to - aRo is the number claimed by lemma 4.2.
We have
-
W2 %
(4.6) n ° y
W - - W
B(Ro-olko) % 2s [Bn(un) (Bn(u ) m0 25)] ta

R
o.,p

2
(1]

2 % T

ag —=-[8 (u)-(B (W) -a, %) +q, L

B(Ro) 025 n'n n ozs ozp

(x,1) dx




RN»:
< < oD 9 ! N
+ -5 (1+in 20 D1+ sup B.(s) vy Ry «

9 . )
o oY G R A SR SO B
1 0%,p sz8 [on(u ) 0025

S b e

ErrEr v

1
Ve observe that B8 (u+) -a, 228 (u+‘—w‘) , and that B'(8) s g (s), Vse R\{0},
n 0 .8 n 2s n

n=1,2,3,... Hence

. ks S A DL i

Lo ~ Bl(8) S sup  B'(S)
sZ‘.?n [Ba(u ) 00251 sy -—

is the number introduced in [AI]) then

then by virtue of (4.2) and (4.3) u+ -3 s

s [V

in either case

sw  B'(s) S B'(<p) ,
2

s?u+-—‘-°-§
2

W 2

Let p0 > p to be chosen, then if 2 Ro , the last term in (4.6) can be majorized by
27C
2 (1+ad)cC
0 p-s N .
B‘('%) 3 3 tn 2 KNRO . pZS+2
2 uo 01

We estimate the remaining terms in (4.€) as follows.

2
(x,1) dx < by Lemma 4.2 <

2n+

+

Lo -
a9 0 (B, Cu))-(8 (u 0,0

2 {1-8
p-s 0 N
< (in 2 ) (—I—G)KN RO .

For the left-hand side of (4.C) we have

)may )T e, L
0 25

s B(R)

T et o gemr

2 % 8

+
in (x,t) dx
w + w ., +
B(R"‘UIR) uo 29 = [Bn(un) - (Bn(u ) ‘uo 25)] +ao zp




w
Q. —

[ +2 0,

s

in - (x,t) dx
w + Wt W ’ ]

ey ; - B (u)-(8 (W) -a, zs)) +ag e g

+ W
B(R-olR)n[Bn(un)>Bn(u )_“0;5]

2
2 (ln+ ZP-S-I) meas B+ (t)

+ w
Bn(u )-aoz—p.R-olR

B+
k,R

(t) = {xeB(R) | B (u (x,t)) > k} .

Combining the previous estimates in (4.6) we see that for all te (7 ,tO] we have

ot L i iat i

(4.7) meas B' . (t)
By )'°02p’Ro'°1Ro

2 2
sn 2P78 -89 N, 2004y o s N
< —" 1. ) xnBt 23 7 875 g Ry -
gn 2P * tn2  (p-s-1) 2

%%

D ey ke,

+ X

meas B+ (t) € meas B (t) 5
(+) L R 8(+)-u~w—R-cR H

Batt V7% 5 N0 al¥ )% p o ™10 |

i

+ . N }

+ meas{B(Ro)\B(Ro -olRO} < meas B ( +)_ PR (t) + X o, Xy RO . i
%otk )70 %017 g

i

Therefore from estimate (4.7) we obtain

PR

+ 2 ,1_0 \ C
meas B + () = —g-—f— ——:2 v L ey —BEl 4 N b R , :
8 (y)-a @ g p-s-1 1-a c2 25 —s-1 2 1 N 0 s
n OZP' 0 1 (p-s-1) ;
where we have set in (4.7).

A 2C (1+:12)

! P 'L

- 1 2

00 n 2

This inequality holds for all % ¢(0,1) , all p 2s + 2 and all t. |1 ,to] . 3

Select

ey LT e T e S T RIS VR ot (e oA



)

i 4 Ai*'&-:-] iy

S e A a4

4

to obtain

meas B

and Pg € N so large that

2
(Po‘s‘l) < (1‘0)(1+90) ’

8 (V )'uop 0

for all te [to

Remarks: (1) It is easily seen that a suitable choice of Py is

(4.8)

and {a] denotes the largest integer contained in a .

2
RO'tO] .

The lemma 1s proved.

C
p-s+2+———~—-8(—)
0 (cw)6 2®

- 8°c

C2 1

Lemma 4.4: There exists p*e]N N Py such that

for all tefr,t

The number

89, 2
meas AT v w (t) s {1~ (—)
u ~——,R

P 0

0]'

Px

depends upon w but not upon n nor R

CON
—,R

(1i) The constants Cl R C2 depend only upon the data and not upon n , w nor R

0 °

b

s

0 °
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Proof of Lerma 4.4: let p, = PgtTr » Tel to be selected. We first establish the fol-
lowing fact. There exists r ¢N (depending upon the data, and w , but not upon n ,
nor Ro) such that
+
Bn(u)—Bn(u— )S“Op .

P*
2 20 ]

Indeed by virtue of the smoothness of Bn §

+ + w ' w
BLOT) - B - —) s 8l ()t
2 0 2

i b o A S e s i N A N3 N v i 6 lgnes ML 26 34005

w + +
where W' - SESU . Now ¥ - ——> u+ L5 L 5o that B'(E) s B'E) < B'(-D) .
p.tr P +r s -] n s
2 0 2 0 2 2 2

To prove the claim it will suffice to select

r=1+ log2

Next we observe that since

Bn(u ——p—)EB(N)-G o

2Px 0 Po

[Bn(un)>8n(u ———J [S(U)>8(u)-a =2 1.

By monotonicity of Bn we have the inclusion

1 [u 2"*] Es(u)>5(u)-uoTo ’

therefore lemma 4.4 follows from lemma 4.3.

Remarks: (i) Taking in account (4.8) and the previous argument we have the following

expression for Py -

. Fa-R
c2 w i (25)

(4.9) Pp "8 +3+) —F— B'(—=)] + |log
(coub)6 2s 2 a
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(11) The result of Lemma 4.4 still holds if we replace p, with any other number q > p, .

Corollary 4.5: Let q be any positive integer larger than Py * Then

6, 2
i +
; meas B(Ro)\A + )\ 2 (-To) Ky Rg
H 7 -—q'.Ro
2
for all te(t -aRz t.]
0 o' 0" °
Nk
Lemma 4.6: For any 61 > 0 there exists 95 € N, 9 > py » such that if % > Roz , then
~'0
s
' a + "] N+2
meas - —
Q q)selrnno .
0 2 0

Proof of Lemma 4.6: Apply inequality (3.12) to the function x»un(x,t) in the ball

B(Ro) x {t} for the levels

+ w R R
"'“--z_q_-’-—l’k ll"zq,qo’qu*'

vhere 9, has to be chosen. If we do this for all te [t0~o. Rg . tol and take in account

Corollary 4.5 we obtain the estimate

W + 4D
(2q+1) measq A’ . ()} s 2 Ry I 19,0, dx
¥ a0 N .
, 2 A, Ro(t)\A,L g (®)
] ’ 0

2
Vte [to-ako, to} .

Integrate both the sides of this inequality over [to-u R(Z’ . tO] , Square and use ;

fiolder's inequality on the right-hand side, to obtain

2 2 2
3 + w 40 2
(4.10) (—“1—-) meas Q. (U -———) s RS .
a1 R, \ 59+ G(2) e 0

t

0

. I 0 |qun[2 dxdt
; 2 .+ + _p2
ty-oRg Ak,Ro(f)\An’Ro(T) ty aRo

.
-/ 1

+ +
meas [Ak,Ro(T)\‘A! ’RO(T) Jdr

0
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+ + 3.
meas (T\A (1, fdt
) [ Ak,Ro LR, :)

In order to estimate the V;’Q(QR )-norm of (un-(u+-iﬁj)+ we use inequalities (3.10)
0 2

applied to the pair of cylinders Q_ ,Q .
Ro 2R0

-2t <5 ¢ 5 and that

Notice that in this connection

sup (u
QZR n 2q 24
0
R I 20-1 _ 4 o2
(ulRo) LRO H (ozRo) 3 Ro .
Moreover observe that since u+ - i%-> 0 the use of (3.10) is justified. Incqualities
2
(3,10) now give
+ w.\t 2 ' 4 =2
[u - -=N7] 1.0 <y sup B (s)[4+§] Ry
n 2% vt ) +
2 Ro sZY -——
Zq
2
2 t I ?(1+K)
. “(un' (1:4‘-'—"9—))‘.'}l2 4y J 0 meas AT (v)] 9 ar
zq 'QZR 2 u+_l 2R
0 tO-ARn a’ o
s 2 7
2
N+6 =(1+x¢)~1 .
2 w,2 , N N(1+) _q Ne N
e (= +
sy =5 (zq) suz B'(s) xy Ry + v 2 kn Ry <y Ry
w
82y ~—
2q
where (3.4) has lteen used. Since u+ -2 u+ -2 > e have g'(u o I )
2q 25 2s 2 2s

Moreover by assunmption

so that there exists a constant C3

such that

2
[ - *-2n? ¢y B

|
29 ;%) 2
0

=£5¢,

Carrying this in (4.10) and dividing bv ™
29*1

lL)z

N
2% RO .

gives

depending only upon the dimension N

and the data,




2
@ _w_ - N+2
(4.11) |meas QR (p - q+1) s C4 sy RO
0 2 60
%o + +
. I meas Ak R (1)\Al R ()] d=
2 0 '
to—oRO
2
4D
where C, 4 C, [‘w

We add inequalities (4.11) with respect to q , from p, to 9 1, and obtain

2 a'(-z“:)
- a  *__w_ P N+2
(9, P.,>[meas Q“o(" qo)] sC, Kl x %o
2 (4]
q,-1 ,t
Oz IO meas A © (1)\A+ (1) ]dr
9Py J¢ -ar? vogte MoremRo
w
()
sc_B 28 < RN+2)2
2 g3 N
0

Where we used the fact that a = 00/2 .

Dividing the inequality by 9 ~ Py » to prove the lemma we have only to choose 80

%
large that
Ta-R
¢, 80D
—_— g e, .

3 1
2(q47p,) 8

We will select

28
(4.12) G@"Putlt —5 7
1

st e o
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For them we have the following result

Lemma 4.7: There exists a number 61 > 0 depending upon a , N and the data, such that if

a + w N+2
measQRc (v -q)<01-<NR0 , ,
0 i
2
then either
N
(1) H = ess sup (u_~- (u'.'--—"’—))+ < R02 , or
a n %
o 2
0

(11) meas Q: (u+-—u- + % H) =0 .
0 %
2 2

Proof of Letma 4.7: The proof is very similar to the pro>f of lemma 3.1 of [10]. We repro-

duce the main steps mainly to trace the dependence of qo on 60 (and hence on w)

Set
2o, R o R R
m 2 2m+2 ’ m 2 2m+6

and consider the cylinders

%

_ 2
g {|x xol <R} x [t - ok, &)

~a

%

= 2
{|x xol < Ry} x [ty - aR ., t)

which satisfy the inclusions 1

R chcQ: .

m+l

We use inequalities (3.10) over 5: and Q; , for the functions (x,c) -+ (un - km)+(x,t)
m

where

1 1
km- (k1+—2-H) -'2;H , Mm=1,2,...




Since kn 2 kl > 0 the use of inequalities (3.10) is justified.

Note that in this case (C'IR'.)-2 = Rsz 22(m+4) and (azcxki)-1 = R‘;z a-l 2m+3 . We have to

show that the numbers

1 1 +2
Y- " w2 Im " 2 N2 I a I (“n'km) dxdt
R'R, H'R QQ
™

e 12
+ q., \F
I [meu Ak R (T)] dt
t,-oR m’ m
0 m

tend to zero as n-+e , Proceeding exactly as in lemma 3.1 of [10}, and using inequalities

(3.10), we see that Ym and Zm satisfy the recursion inequalities

- 2 2
4m 1+ ——
C2 " 41 Y, N2 | N42 14
(1) o B (23) [Ym +y "0z ]

. 4m

c2 R 14
(1 a 8 (23) Elm+zm ]

where 6 is a constant depending only upon the data and not upon n , w nor Ro . The

procedure shows that C can be taken to be so large that

A > 0 such that if

then the recursion inequalities [I] - [II] imply that Ym ’ zm-»o or m+>« , From [14],
setting
2.k
d= min(N+2 H 1+'<}

the number A 1is given by -

: N+2
2 _5(x42)

A= mi [—:—a_w—] 2 2d [._._‘!T

(R R cat (-

2C8 (2,) 2c8 (zs)




i fiq 3 : T < “ . v i 2
-.": - om0t . — et »© o
Y
i
§
¢
k)%
2“1 a
Now since X = —= | «x_ ¢ (0,1) and —-— < 1 above gives
" N 1 qégu(.“’.)
- s
2
b _s(ne2) 5
' d-ﬁ;;)\zxo--.——g—;——‘minz 4,
2CB' (—)
s
2
1+«

where we used the fact that @ = —zg and we have set

2d 2 xd

.

_lx _5(n2) _5
% " (&) * minf2

The lemma follows 1if

-(N+2) o
Yl < Ro meas QRo (kl) < 01 N
8o %
b 00 w = 00 W
8' (=) 8' (=)
2 2

From (4.12) and the remarks above it follows that the conclusion of lemma 4.7 holds true if

we choose
2 o 1¥2b
[ 8-
*NCq & (zs)
(4.13) Yo TPt T T |
2 oo 90

We now recall the definition of p, and that 90 = cowb , and deduce that a suitable choice

of %, is given by

1+2b
w

(' 8 (D)
2

2

x..C

aGp =t (N 12‘ sc, c-max{6.2b+3}
%

0 " “bmai(6;26+3) + | log, —5 .

2 0

S o




. - . . - . N 5 > 3 s
s “ S Pt e ey pr 2N T . .
& i SN 3 ] > - .« ..
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Set

f’\'z € ax{6;2b+3)
As (e max{6;2
P L

’

a = bmax{6;2b+3}

c=1+2b.
Then
¢ W
v v
8 B! (<)
- + _—
qo s S + 1A a + 1032 -
w 0

We remark that s ,A,a,c depend only upon the data and not upon n,yu nor R

0 -

Proof of the Proposition: Set

c
Ew%) +8' (- %ﬂ B' (D) +8' (- )
(w) =8 +5+A 2 2 + log 2 2 i
a 2 a
w 0
and suppose that
N«
w w w 2
(1‘-11‘) 25 > q0+1 2 W > (2 Ro)
2
Obviously either
2(1
N+2¢
- - W, 1 N+2
1. meas QRo (u +2s) s Cuw (. RO
or
2:1
N+2¢
- -, W 1 N+2
2. meas QRo (u +25) > cqu N Ro

Case 1: By lemma 4.1 either

N<

l1.a. sup (un-(u_+—%))- < Ro2 , or
Qg
0

———

}
'




- - 1
1.b. meas Q. (u +2 -1 =0.
R, 5 2

7

l.a occurs then

- _ w4l TSR "
~inf v S -y - s+R0 < by (4.14) < " TR
Q 2 2
o

Adding sup u, on the left-hand side and u+ on the right-hand side we obtain
%
0

W 1
gac u, < gsc un - 2“(“’) s m(l - 2"(“’)) .
Ro 2R0

B

If 1.b occurs then

-fnfuy <~y __w;
Q, " 2
Y

2

- -y -

1
gsc un < w(l - 2"("’)).
Ro

2

Cagse 2: By Lemmas 4.2 -4.6 in view of (4.14), the assumptions of lemma 4.7 are verified,

It gives the following alternative. Either

hid

supun5u+-—:—r+R025u*— q"’
Qg 20 20
2
2

+1

+
; ess sup u_ S
¥ a n
Qp 20 2 2
Y
2




Hence in either case

1
ozc u, < u(l zﬂ(w) .

Ro

2

Now to determine R, notice that by virtue of (4.14)

Cowb (2R0)2 N 2sb—5

2

Setting = min{l ; 2°

co} , and

R
0 h _
Vi 2 2 E"(sz) E R,

(1 - 2
so that QRo > QR* E {lx-—xol <R} x [to-—R* .to]

follows that

1
osc u < w<i - —;?;7)
%, 2

Finally if (4.3) is false then (4.15) follows at once. The proposition is proved.

S. Proof of Theorem 1l:

Proposition 4.1 holds true for any number w satisfying

osc u < w < 2M
Q n
2R0
We stress the fact that the constants {,,a,b,c,A,s,h in proposition 4.1 do not depend

upon n , w nor Ro . Let (x0 .to) €fp be fixed and select




w=2M 2 08cu
Q
QT
be so small that QZRO c n.r and

.0
2
(ZRO) <

2M

(5.1) m’ .

Define sequences of positive real numbers {Mm} , {Em} ’ {Rm} as follows

~-m{M )

. - - L3 -
MM =M (1-2 ) ,m=2,3,...

1
2
Nk
(M)
2t
(M

m-min g 3 . m+1)

= 2R ;R

h
S Em(Rm) ;m=2,3,...

{M 330 ; (R }V0 and for all meN
m ™

osc u_ S M
n m

9

m

> M then for all

Proof of Lemma 5.1: -

-"‘(Mo)
] <1 . Therefore Mms

1f Mm 1>...>H0>0.

Moem

The second statement is obvious.

€ = (1-2
m+ew ., A contradiction.
In view of (5.1), proposition 4.1 implies that

s M, .
osc u. )

Q..

Moreover
Ng h
2 2
(R)° =g

Using the definition of "2 we have

me N Mm‘.lstg;

,m=1,2,... , which implies Mm),O as




b e Azt IR W

i
1
3

’ .,w a - - ’ ' . . 3 -
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i . -
xe oo N M, EEE Y N
(R,) 2 < g 2 e v e < F 2 -——2——— 2 -~ 2 2 4
2 1 (M) =T (M) ‘1 CISEEICIY 1 (M)
2 1-2 2 2 2

Recalling the definition of b and s , it is immediate to see that

Neb
2
2 ~————-—2M2 <1
n(Mz) *
2
Nk w(M,)
2.2 1
Moreover €1 < —"—(M) 3 therefore,
2
2
5o
(R)) 0Ly
2
Thus we have shown that the two inequalities
R (M)
osc u_ < M R < M, 2 m
n 1 1 1 ’
QR
1

imply the same inequalities for R, and M, . The same argument shows that if

then the same inequalities are valid for m + 1 . The lemma is proved.
We remark that the construction of the sequences {Mm} and {Rm) depends only upon

the data and is independent of the properties of the approximations un(x,t) .

Lemma 5.2: If K 1is a compact contained in QT , then there exists a non-decreasing con-

+ +
tinuous function wK(-) t:R >R , mK(O) = 0, such that
1
2

Iun(x1 sty) - u(x, ,tz)l < wK([xl—x2| + |t1—t2{ )

V(xi,ti)cl( ,1=1,2 and Vne N .

¢ g e i s v
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The function uK(') is determined only in terms of the data and dist (K;T)

the statement is a consequence of Lemma 5.1 and establishes theorem 1,

6. Continuity at T

In this section we state the assumptions that permit at least in some case, to extend

the interior continuity of the solution of (1.1) up to the parabolic boundary of QT .

{A)] - Continuity at t =0

Let u eVZ(QT) be a weak solution of (1.1) satisfying the identity
t

In {-B(u) ¢, + a(x,r,u,qu) . Vx ¢

(6.1) J B(u(x,t)) ¢(x,t)dx + [
Q 0

+ b(x,T,u,V_u) ¢} dxdt = J B(u.(x)) ¢(x,0) dx
X Q 0

9
for all ¢ ew;’l(QT) and a.e. 0 st < T, where uo(x)e LZ(Q) and is continuous over a

compact K c¢ @ with modulus of continuity w {(*) . On u(x,t) we assume the following

0,K

[AI] u(x,t) satisfies [Aa] where the functions un(x,t) satisfy also identify (6.1)

with 3(*) replaced by Bn(-) , and all 0 s ts<T.

Theorem 6.1: The functions (x,t)-*un(x,t) are equicontinuous on K'x [0,T] , for every

compact K'cK

Corollary: There exists a non-decreasing continuous function s-+w(s) :n(*»»m+ ,w(0) =0

such that
fulx; b)) - ulx, .cz)f < m(fxl —xz{ + }tl 'leé)

for all (xi ’ti) ek' x [0,T) , 1 =1, 2, and all compacts K' c K .
The function s - w(s) depends uniquely upon the data and the modulus of continuity

of uo(x) over K .

[B] The case of Neumann boundary data

Consider (formally) the problem

TN T e e L ey i | e

T T g T T TN

o sammaen
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;L B(u) - div Z(X.t,u,T u) + b(x,t,u,7 u) =0
ot X X

(6.2) § a(x,t,u,7 w) - EST(x,t) = g(x,t,u) on S,
u(x,0) = uo(x) XeN , uo(x)e LZ(Q) .

where n (x,t) = (n ,n ,...,n_ ) denotes the outer unit normal to S_ .
ST X x2 Xy T
I\

On the boundary data g(x,t,u) we assume that

[G) g 1is continuous over ST x R and admits an extension g(x,t,u(x,t)) over QT such

that

2 Bttt & dtuell, o sc<e.
T

By a weak solution of (6.2) we mean a fun-tion u evz(nT) satisfying

t

(6.3) J B(u(x,t)) ¢(x,t) dx + J J {~8(u) ¢, + (X, T U,V u) + V.
Q Q X X

0
(t
+ b(x,r,u,vxu)¢} dxdt = J I g(x,1,u(x,1)) ¢(x,1) do
0’3

[
+ J B(uy(x)) ¢(x,0) dx
Q
for all
(A2) We assume that u(x,t) can be constructed as the weak vZ(QT) limit of a sequence of

;'O(QT) where U satisfy identity (6.3) with B(+) replaced by Bn(-)

and u(x,t) replaced by un(x,t) . Moreover we assume that the sequence {un} is

u (x,t) eV
n

equibounded, i.e.

Ilunllw,QT <M , n=1,2,3...
for a fixed positive number M .

Theorem 6.2: Assume that 2372 1{is a C1 manifold in R"-l, and suppose that [G] holds.

Then the sequence {un} is equicontinuous in o x [t,T) , for every 1 > 0 .
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If in addition uo(x) is continuous in @ , then the sequence {un} is equicontin-

uwous in Q_ .
T

Corollary: Let ueVZ(QT) be a weak-solution of (6.3), let (Az) and {G] hold, and assume
N —
that 23Q is a Cl manifold in IRr\ 1 . Then for every 1 > 0 there exists ur(-) :R+~> R+ R

wT(O) = 0 continuous and non-decreasing such that
1.
- - - "
]u(xl ’tl) u(x2 s t2)| < m‘l_(lxl le +ity t2| )
V(xi ’ ti) € 5 x [TlT] .
If in addition uo(x) is continuous in , then (x,t)-+u(x,t) 1is continuous over

6‘1‘ with modulus of continuity wo(-) . The function w‘r(.) can be determined in terms of

the data and the number 1t > 0 , whereas uo(-) depends on the data and the modulus of

continuity of uo(x) on & .

{C] The case of homogeneous Dirichlet boundary data:

let u eVz(QT) be a weak solution of (1.1) which in addition satisfies

(6.4) u|S =0, (x,t) eST a.e.t ¢[0,T]
T

in the sense of the traces over §

T
On 30 assume the following

*
(P) 38 >0, R0 > 0 such that v, € 90 and every ball B(R) centered at Xy R ¢ Ro

*
meas{2 n B(R)] < (1-6 ) meas B(R)
Moreover on u impose the assumption

(A3) u(x,t) satisfies [AA] where each of the u has zero trace on S,r

Theorem 6.3: Let (6.4), (P) and (A3) hold. Then the sequence (un} is equicontinuous in

? x [t,T) , forall 1>0.
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1,1

If in addition u(x,t) satisfies (6.1) for all ¢ ¢ w2

(QT) with uo(x) continuous

over {, then the sequence {un} is equicontinuous in QT .

Corollary: Let wue VZ(QT) be a weak solution of (1.1) satisfying (6.4) and let (P) and
(A3) hold. Then for every 1 > 0 there exists a continuous non-decreasing function wr(') »

wT(O) = 0 such that
' %
fux) 1)) - u(x, ,tz)[ < wT(lxl-le + |t1 -t2| )

for all (x ,t)e@x [1.T] , 1=1,2.
If in addition wu(x,t) satisfies (6.1) for all ¢ ew;'l(nT) with uo(x) continuous
over Q , them (x,t)=+u(x,t) in continuous over 5& with modulus of continuity wo(-)
The functions mr(-) can be determined in terms of the data and the numbers 1t and
6* of (P), whereas m0(~) can be determined in terms of the data, 6* and the modulus of

continuity of uo(x) over & .

Remark: In [10) for the case of homogeneous Dirichlet boundary data, we derived a modulus
of continuity of Holder type, for the solution u(x,t) , near the lateral boundary ST .
This is not the case in the present situation because of the different nature of the graph
B() .
The proof of Theorems 6.1 -6.3 can be given by using the same method of proof for the
analogous theorems 5.1-5.3 of [10], modulo some modifications due to the nature of B .
It should be pointed out that we were unable to give an answer for the case of non-

homogeneous and continuous Dirichlet boundary data.

7. Closing remarks

I. The fast diffusion case

Consider formally the equation

3 -
(7.1) 3t u - div a(x,t,u,Vxe(u)) + b(x,t,u,qu) = ()

i e ie ke
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in QT, where s + B(s) is a monotone function satisfying assumption lAll. We assume
that the vector ;(x,t,u,S) and the function b(x,t,u,S) satisfy the same growth conditions
stated in [A2] - [A3].
By a weak solution of (7.1) in QT we mean a function u € VZ(QT), such that
|Vx6(u)l € Lz(QT), and satisfying
t

(7.2) [ wax|® + [ [ {-w_+3a(x,T,u,V 8(w) * V¢ + bix,7,u,7 u)¢ldxdr = 0
Q to t X X X

to Q

o

for all ¢ € W'l'l(ﬁ ) and almost all O <t < t < T,

2 T [o]
Our motivation for considering such an equation is that (7.l1) represents a quasi-linear

generalization of

m_. s .
(7.3) u, = A(|ul"sign u) in D o)

for the case 0 <m < 1.

Equation (7.3) arises as a model for the spatial spread of biological population or in
some problems in plasma physics [17, 18].

Our purpose here is to point out that weak solutions of (7.1) are continuous in their
domain of definition, regardless of their signum. That is the continuity is a consequence
solely of the local smoothing effect of operators like in (7.1).

Let Bn(-), denote a sequence of C°(30 functions such that Bn + B uniformly on
compacts of R\{0} and satisfying (2.2).

[Ah] Let u ¢ VZ(QT) be an essentially bounded weak solution of (7.1). We assume that u

can be constructed as the weak Vz(ﬂT) - limit of a sequence {un} such that

”“n”eo.ﬂnr b3 M<®» , n=1,2,3,...

for a positive constant M, and each u e \4 (R_) is a weak solution of (7.1l) in the sense

of identity (7.2), with B8(°*) replaced by Bn(').

Theorem 7.1: Let u € VZ(QT) be a weak solution of (7.1) satisfying [AZ]' Then (x,t) -+ u(x,t)

is continous in QT.

Do e




We leave to the reader the task of stating facts about boundary regularity along the

lines of section 6.

The proof of Theorem 7.1 can be given by straightforward modifications of the methods of

[10] and the ones in section 4 - 5 here.
We omit the details.

Corollary: ILet u € Vz(ﬂT) be a weak solution of

u, = A(|u|™sign u) in D' (qy)

m>0 .

Then (x,t) -+ u(x,t) ¢ C(QT)..

II. On the Harnack inequality

let u e vz(nT) be an essentially bounded non-negative weak solution of (l.1) with B8(-)
replaced by the identity graph. Then it satisfies the Harnack inequality in the form introduced
by Moser [19]). To be specific let (xo,to) € nT and let R be so small that QR of "vertex"
(xo,to) is contained in QT. For any given set of numbers o, € (0,1), i =1,2,3,4 one can

find a constant y = y(ai) such that

(7.4) inf u > Yy sup u

r' R

where R+, R are the cylinders

2
R, tol y O, >0 03 ’

£ B(R - clR) x [to - 2 4

9

X 2 2
z B(R - olx) x lto - 03R . To - 048 )

Inequality (7.4) was proved by Moser ([19] for the linear case and generalized by several

authors (20, 21] to the full quasi-linear situation. It turns out that (7.4) can be used to

prove the Holder continuity of essentially bounded weak solution of (1.1) with B(s) = s.
Here we want to give examples which show that essentially bounded non-negative weak

solutions of equations like (1.1) or (7.1) do not, in general, satisfy the Harnack inequality.




case m > 1:

Consider the Cauchy problem

1

WhH, - bu=0 in D'(mx B

2 — i

=l fem .

u(x,0) = (cos x)

Aronson [3] shows that (7.5) admits a glcbal unique weak solution, which is classical for

0<t<«<T= (m1l)/2m(m+l). Moreover setting xj - (2] - 1) %, j € %, we have

u(xj,t)-o e 02t <rT

u(x,t) >0 , on R\ U {xj}x to, ™ .
je 2

Pix the point (xj,'r-e), € >0 and let R be so small that the cylinder QR of "vertex"

(x, t-€), is contained in IR % (0,T). Then for such a choice, inequality (7.4) fails to

3
be satisfied.

() case 0 <m < 1:

Consider the Cauchy rroblem

(ut = a(lu|®sign w in D' (= x (0,m)

u(e+,0) = “o(')

(7.6)

ug 20 , uy 0

N N
up € Li(R) 0 L (R) .

0

If 0 <m < (N—2)+/N, then (7.6) admits a unique, bounded non negative solution, which

vanishes identically after a finite time T = T(m). Hence the Harnack inequality is not

satisfied.

1t (N-2)+/N <m< 1, then (7.6) admits a unique, bounded solution which is strictly

positive over m“ x (0,»). Consequently by the results of [20] - [21] it satisfies (7.4),

where Y depends upon a local lower and upper hound on u.

For the stated existence-uri.queness results we refer to [15] and the extensive biblio-

graphy on it.
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III. Extensions
The methods used in sections 3 - 5 might be modified to include graphs 3 having a
singularity of different nature with respect to the one considered here, provided the coercivity
is kept.
Discussing the results with Professor W. Ziemer, he pointed out that for example . ~uhs
like
B(s) = &n}s|

could be handled as well.
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